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SUMMARY:
This study focuses on the application of dimensionality reduction modelling techniques, such as Principal Component

Analysis (PCA), Auto Encoders (AE), and Convolutional Auto Encoders (CAE), to a real urban area test case for
pollutant forecasting. Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) architectures of
neural networks are employed to develop a digital twin of Ixelles in Belgium and predict the pollutant concentrations
in real-time. An extensive sensitivity analysis was conducted to define the optimal parameters for the implemented
methodologies. PCA as a reduced order modelling approach was shown to outperform both of the proposed Auto En-
coder methodologies in both time and prediction accuracy. CNN captured the temporal patterns more accurately than
LSTM in most methodology combinations. As future research, the potential use of Dynamic Modal Decomposition in
capturing the temporal trends and patterns instead of neural networks is discussed and a data-driven CFD modelling
approach for pollutant dispersion coupled with the forecasting framework is proposed.
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1. INTRODUCTION

In recent years, the developments in transportation and industrialization have constituted air pol-
lution as one of the main widespread environmental and health issues. Air quality forecasting has
become an important aspect of smart city planning and management (Dembski et al., 2020). Dig-
ital twin technologies, such as sensor networks coupled with machine learning algorithms, can be
used to predict and monitor air pollution levels in real-time. This way, government agencies and
organizations can take proactive measures to reduce air pollution, to identify its sources and tar-
get interventions accordingly to mitigate its negative effects on human health and the environment
(Fenger, 1999).

In the context of SPICECO (Secure and open Platform for an Intelligent City ECOsystem) project,
an urban air quality prediction framework is being developed that will be openly available to the
public as a digital twin of the district of Ixelles in Brussels, Belgium, using state-of-the-art Ma-
chine/Deep Learning (ML/DL) methodologies to predict the concentrations of key air pollutants.
A sensor network monitors the local meteorological conditions and concentrations. Dimensional-
ity reduction techniques such as Principal Component Analysis (PCA), Auto Encoders (AE) and



Convolutional Auto Encoders (CAE) are employed to reduce the vast volume of input data and
therefore drastically decrease the training time of the proposed models, in order to predict the local
air quality in real-time.

2. METHODOLOGY

Throughout the district of Ixelles in Brussels, Belgium, a network of 11 QSENSE-Air sensors
by Macq are installed at key locations that cover a total test case area of ~1 km?. The local
meteorological conditions (Temperature, Pressure, Humidity, Precipitation, Wind Direction and
Speed) and pollutant concentrations (PMj 5, PM g, NO; and O3) are measured with a 10-minute
sampling frequency. The date and time of the samples are then converted to numerical values (such
as day of the year, day of the week, minute of the day etc.) before they are used as input for the
proposed methodologies, so that the different seasonal/temporal patterns can be captured.

The aim of the present work is to enable the real-time prediction of the pollutant concentrations
(y) as a function of the meteorological conditions (x) and time t. Without loss of generality, the
dynamic system can be expressed as:

y = f(x(1),t) (1

where ¢ € [0,T] denotes the time with final time 7 € R, x: [0,7] — RS and f: R® x [0,T] — R*
denotes an unknown operator linking x and y.

Two different approaches have been used in this research. The first one is to teach the direct
mapping f: x — y with f =~ f considering the full meteorological and time input data. For this pur-
pose, both Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) neural
network architectures are employed. The second methodology relies on the assumption that a re-
duced and optimal basis exists to represent the input data. Therefore, the mapping is trained from
a subset x4 of the data to reduce the computational cost: f: x™ — y. Hence, two steps are re-
quired: the reduction of the input data and the regression from the latent space to the outputy . As
far as the dimensionality reduction is concerned, Principal Component Analysis (PCA) (Jolliffe
and Cadima, 2016), Auto Encoders (AE) (Wang et al., 2016) and Convolutional Auto Encoders
(CAE) (Masci et al., 2011) have been used. Subsequently, the regression is performed with the
two aforementioned methodologies.

An extensive sensitivity analysis study was conducted to fine-tune the parameters of the above
methodologies, such as the depth of the network, number of trainable parameters etc., an overview
of which is given in Table 1 below.

Table 1. Overview of the sensitivity analysis parameters setup.
Methodology  Train. Parameters Batch Size Latent Dimension Depth of Layers

CNN 32~4096 - - 1~3
LSTM 100~800 - - 1~3
PCA - - 4~8 -

AE 512~1024 1~32 4~8 2~4

CAE 32~128 1~32 4~8 2~4




3. RESULTS
The sensitivity analysis suggested a network depth of 3 layers as the optimal for all NN architec-
tures as a compromise between training time and retained information. Since PCA is linear and
does not require training, only the two AEs are compared in Fig. 1 (right). A batch size of 4 and
a latent dimension size of 7 (compared to the original 9) were chosen for both AEs and CAEs di-
mensionality reduction methodologies. Regarding the CNN and LSTM architectures, the number
of trainable parameters was kept to 1024 and 512 respectively. All the results discussed below
were implemented with the aforementioned configurations and the same dataset of 30-minute ob-
servations over ~3 months was used as input.
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Figure 1. Cumulative explained variance and training time per methodology for different combinations of batch size
and latent dimension size.

One can observe that PCA reduces the training time of both neural network architectures almost
by half, while Auto Encoders may actually increase it, as in the case of AE-LSTM. As seen in Fig.
2 (left). The predicted values for PM; 5 in Fig. 2 (right) are indicative to showcase the capability
of the forecasting framework. Similar predictions are performed for PM;g, NO; and Os.
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Figure 2. Prediction accuracy vs training time of the proposed methodologies (left) and PM; 5 forecasting results
using CNN/LSTM with PCA for ROM compared to measured values (right).



4. CONCLUSIONS & FUTURE WORK

The present study aims to develop a real-time pollutant concentration prediction framework. CNN
and LSTM neural network architectures coupled with three different dimensionality reduction
methodologies are implemented to map the local meteorological and date-time inputs to four key
air pollutants. A sensitivity analysis was conducted to identify the optimal parameters of the mod-
els. Even though all NN and ROM model combinations demonstrated a prediction accuracy of
over 85%, PCA with CNN was shown to outperform both of the proposed Auto-Encoder method-
ologies in both time and prediction accuracy.

As future research work, we could cite the implementation of modal decomposition methodologies
for time-series predictions. For example, High-Order Dynamic Modal Decomposition (HODMD)
(Vega and Le Clainche, 2020) has been shown to adequately capture the trends and temporal pat-
terns in time-dependent fluid dynamics cases (Corrochano et al., 2023; Le Clainche and Vega,
2018) and could have potential in such applications. Finally, Reynolds-Averaged Navier-Stokes
(RANS) simulations are able to model pollutant dispersion in complex urban flows, but the re-
quired turbulence models (Bellegoni et al., 2023; Parente et al., 2011) introduce uncertainty in the
results (for example due to the wrong assumption of the turbulent Schmidt number Sc; (Longo et
al., 2020)), which may limit their application in the decision making process. A data-driven mod-
elling approach could couple the developed pollutant forecasting framework with the dispersion
fluid dynamics simulations to counter this by solving the inverse problem and therefore reducing
the otherwise unavoidable uncertainty.
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